Образец макета экзаменационного билета

	cr08es-	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №	Утверж	даю
1930 Tall		вступительного испытания в магистратуру	Зам. предс	елателя
* <u>N</u>	<u>NON</u>		ПК «НИУ	
		по направлению подготовки		(dvi3ii)
Э:	нМИ	15.04.03 Прикладная механика	2025	Γ.
№ п/п		Формулировка задания		Кол-во баллов
		БАЗОВАЯ ЧАСТЬ		
2		базовой части Известно, что при нагружении силой P_1 =10 кH балки а) перемещение Δ_1 ее правого края составило 0.5 мм. Чему равно значение силы P_2 , если известно, что для балки б) перемещение Δ_2 =0.8 мм. а) Базовой части Определить наибольшее значение величины поперечной силы Q_v и указать номер участка, на котором оно достигается при условии, что F =10 кH, a =1 м		7
3	Задание	базовой части Определить величину усилия в верхнем горизонтальном стержне (I) фермы, если сила F равна 10 кH, длина $l=1$ м		7

4	Задание базовой части	7
	Вычислить коэффициент запаса прочности для заданного напряженного состояния пользуясь гипотезой максимальных касательных напряжений. Принять напряжения текучести σ_{τ} равными 240 МПа.	
5	Задание базовой части	7
	Вал, длиной 51, жестко закрепленный в опоре A (схема №1) и закручивается крутящим моментом m. При этом, наибольшие касательные напряжения в схеме №1 составляют 100 МПа. Найти наибольшие касательные напряжения в схеме №2, когда правый конец вала В также жестко закрепляют. МФ1 МФ1 МФ2 МФ2	
6	Задание базовой части	7
	К ступенчатому стержню, жестко защемленному с одной стороны, имеющего площади поперечных сечений F_1 = 5 cм 2 и F_2 = 10 см 2 приложены силы P_1 = 60 кН и P_2 = 25 кН. Размеры стержня до деформации l_1 = $0,4$ м, l_2 = $0,4$ м, l_3 = $0,5$ м. Определить абсолютное перемещение свободного конца стержня. Принять модуль Юнга равным 200 ГПа.	

	СПЕЦИАЛЬНАЯ ЧАСТЬ	
7	Задание специальной части Определить максимальные нормальные напряжения (по модулю) в сечении А балки, нагруженной сосредоточенными силами P_1 =20 кH, P_2 =30 кH и изгибающими моментами m_1 =15 кH м, m_2 =28 кH м. Длины участков l_1 =2 м, l_2 =2 м, l_3 =3 м, l_4 =3 м. Поперечное сечение балки выполнено в виде круга (диаметра d =200 мм) с прямоугольным вырезом (размером b =20 мм на h =50 мм).	9
8	Задание специальной части Определить собственные частоты и формы колебаний диска на консольном безынерционном стержне, $r=l/3$. $EI \qquad m, J=mr^2$	12
9	Задание специальной части Определить собственную частоту малых колебаний системы, состоящей из рейки массой m_1 , которая движется по катку без трения и по цилиндру радиуса r и массой m_2 без проскальзывания.	12
10	Задание специальной части Длинная оболочка с круглым поперечным сечением нагружена погонными изгибающими моментами M_0 и погонными поперечными силами Q_0 по торцу. Используя теорию краевого эффекта найти прогиб цилиндрической оболочки в торцевом сечении. Принять $Q_0=100$ кН/м, $M_0=50$ кН, $R=50$ см, $h=3$ см, $E=200$ ГПа, $v=0,3$	12

15.04.03 Прикладная механика

Пример решения задач билета

№ задания	Формулировка и решение задания
	Задания базовой части
1.1	Полагая, что к системе может быть применен принцип независимости действия сил, применим теорему о взаимности работ (теорему Бетти), которая формулируется следующим образом: для двух состояний одной и той же упругой системы работа сил первого состояния на перемещениях по их направлениям, вызванных силами второго состояния, равна работе сил второго состояния на перемещениях по их направлениям, вызванных силами первого состояния. Таким образом, выполняется условие: $P_2\Delta_1 = P_1\Delta_2$ Отсюда найдем $P_2 = P_1\frac{\Delta_2}{\Delta_1} = 10\frac{0.8}{0.5} = 16 \text{(кH)}$
2.1	Определив из уравнений равновесия проекции опорных реакций на вертикальную ось: в левой, шарнирно неподвижной опоре $7/3F$, в правой, шарнирно подвижной опоре $-4/3F$, найдем по участкам поперечные силы в балке: $Q_y^I = -F$ $Q_y^{II} = \frac{4}{3}F$ $Q_y^{II} = \frac{1}{3}F$ $Q_y^{IV} = -F$ Т.е. правильный ответ: наибольшей будет величина поперечной силы на участке II. ≈ 13.3 кН
3.1	Поскольку ферма симметричная, то проекции опорных реакций на вертикальную ось равны по $F/2$. Высота фермы, как высота равностороннего треугольника равна $\frac{l\sqrt{3}}{2}$ Тогда, применяя метод сечений, можно определить неизвестное усилие N в горизонтальном стержне (I) из уравнения: $\frac{F}{2}l+N\frac{l\sqrt{3}}{2}=0$ Значит $N=-\frac{1}{\sqrt{3}}F$ Т.е. правильный ответ \approx -5,8 кН
4.1	Найдем эквивалентные напряжения, пользуясь гипотезой максимальных касательных напряжений $\sigma_{_{ЭKB}} = \sqrt{\sigma^2 + 4\tau^2} = \sqrt{10^2 + 4 \cdot 80^2} \approx 160,3 \ M\Pi a$ Коэффициент запаса прочности $n = \frac{\sigma_{_{\mathrm{T}}}}{\sigma_{_{ЭKB}}} = \frac{240}{160,3} \approx 1,5$

№	_	
задания	Формулировка и решение задания	
5.1	Значение наибольших касательных напряжений для статически определимой схемь №1 можно определить по формуле $\tau^I = \frac{m}{w_p}$ где w_p - значение полярного момента сопротивления стержня. Схема №2 статически неопределима. Раскрывая статическую неопределимости найдем, что в опоре В значение крутящего момента будет равно m/5 при этом момент в этой опоре направлен противоположно направлению приложения момента m. Тогда наибольшие касательные напряжения для статически неопределимой схемы №2 можно определить по формуле $\tau^{II} = \frac{4}{5} \frac{m}{w_p}$ Следовательно, $\tau^{II} = \frac{4}{5} \tau^I = 80$ (МПа).	
	Построим эпюру продольных сил N_z по длине стержня. Поскольку стержень защемлен, в заделке возникает неизвестная реакция в опоре, поэтому расчет начинаем со свободного конца. Делим брус на участки нагружения, строим эпюру продольных сил. Имеем два участка нагружения. Участок 1: N_1 =+25 кH, растянут. Участок 2: +25-60+ N_2 =0, отсюда N_2 =-35 кH, сжат. На каждом участке (l_1 , l_2 , l_3) определим абсолютное удлинение. $\Delta l_1 = \frac{N_1 l_1}{EF_1} = \frac{25 \cdot 10^3 \cdot 0.5}{200 \cdot 10^9 \cdot 5 \cdot 10^{-4}} = 0,125 \text{(мм)}$ $\Delta l_2 = \frac{N_1 l_2}{EF_2} = \frac{25 \cdot 10^3 \cdot 0.4}{200 \cdot 10^9 \cdot 10 \cdot 10^{-4}} = 0,05 \text{(мм)}$ $\Delta l_3 = \frac{N_2 l_3}{EF_2} = \frac{-35 \cdot 10^3 \cdot 0.4}{200 \cdot 10^9 \cdot 10 \cdot 10^{-4}} = -0,07 \text{(мм)}$ Абсолютное перемещение свободного конца стержня будет равно $\Delta l_1 + \Delta l_2 + \Delta l_3 = 0,125 + 0,05 - 0,07 = 0,105 \text{(мм)}$	
6.1	Р ₁	

№ задания	Формулировка и решение задания		
	Задания специальной части		
7.1	Определим величину изгибающего момента в сечении А. Поскольку балка защемлена, в заделке возникают неизвестные момент и перерезывающая сила, поэтому расчет начинаем со свободного конца. $M_x{}^A = -m_1 - P_1(l_2 + l_3) + P_2 l_3$ Значение изгибающего момента (по модулю) в сечении А равно $ M_x{}^A = -15 - 20 \cdot (2+3) + 30 \cdot 3 = 25 (\text{кH} \cdot \text{м})$ Определим осевой момент инерции сечения относительно оси Ох. Представим момент инерции сечения как разность моментов инерции круга и прямоугольника. Для круга ось Ох проходит через центр тяжести $J_{x \text{ круга}} = \frac{\pi d^4}{64}$ Для прямоугольника ось Ох проходит через центр тяжести $J_{x \text{ прямоуг.}} = \frac{bh^3}{12}$		
	Момент инерции сечения $J_x = \frac{\pi d^4}{64} - \frac{bh^3}{12} = \frac{3,14 \cdot 200^4}{64} - \frac{20 \cdot 50^3}{12} = 760 \cdot 10^5 (\text{мм}^4) = 7,6 \cdot 10^{-5} (\text{м}^4)$ Осевой момент сопротивления сечения равен		
	$W_x = \frac{J_x}{d/2} = \frac{7,6 \cdot 10^{-5}}{0,1} = 7,6 \cdot 10^{-4} (\text{м}^3)$ Максимальные нормальные напряжения (по модулю) в сечении А будут равны $ \sigma^{max} = \frac{ M_x^{\ A} }{W_x} = \frac{25 \cdot 10^3}{7,6 \cdot 10^{-4}} \approx 33 (\text{М}\Pi\text{a})$		
	Система имеет 2 степени свободы. За обобщенные координаты выберем		
	вертикальное перемещение диска $q_1=y$ и угол поворота $q_2=\phi$. Уравнения колебаний удобно взять в виде $\mathbf{F}\mathbf{M}\ddot{\mathbf{q}}+\mathbf{q}=0$, где $\mathbf{M}=\begin{bmatrix} m & 0 \\ 0 & J \end{bmatrix}$ —		
	диагональная матрица инерции, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}$ — матрица податливостей. В		
0.1	развернутой форме записи уравнения имеют вид $f_{11}m_1\ddot{q}_1+f_{12}m_2\ddot{q}_2+q_1=0$,		
8.1	$f_{21}m_1\ddot{q}_1 + f_{22}m_2\ddot{q}_2 + q_2 = 0.$		
	В нашем примере $m_1 = m$, $m_2 = J$, $q_1 = y$, $q_2 = \varphi$.		
	$f_{11}m\ddot{y} + f_{12}J\ddot{\varphi} + y = 0$, $f_{21}m\ddot{y} + f_{22}J\ddot{\varphi} + \varphi = 0$.		
	Для нахождения элементов матрицы податливостей приложим в направлении обобщенных координат единичные безразмерные усилия, построим соответствующие единичные моменты \overline{M}_1 и \overline{M}_2 .		
	В результате вычисления интегралов Максвелла – Мора получим		
	1 1 1		

№ задания	Формулировка и решение задания
<u>задания</u>	$EI \qquad m, J = mr^2$ $I \qquad \downarrow V \qquad \uparrow V \qquad \downarrow V$ $I \qquad \downarrow M_1 \qquad \downarrow M_2 \qquad \downarrow M_2 \qquad \downarrow M_2 \qquad \downarrow M_3 \qquad \downarrow M_4 \qquad \downarrow M_4 \qquad \downarrow M_4 \qquad \downarrow M_5 \qquad$
	$f_{11} = \int_{0}^{l} \frac{\overline{M}_{1}^{2}(z)}{EI} dz = \frac{l^{3}}{3EI}, f_{12} = f_{21} = \int_{0}^{l} \frac{\overline{M}_{2}^{2}(z)}{EI} dz = \frac{l^{2}}{2EI},$ $f_{22} = \int_{0}^{l} \frac{\overline{M}_{1}(z)\overline{M}_{2}(z)}{EI} dz = \frac{l}{EI}.$
	Решение уравнений в виде $y=v_1\cos\omega t$, $\phi=v_2\cos\omega t$ приводит к уравнениям относительно амплитуд
	$(1 - \omega^2 f_{11} m) v_1 - \omega^2 f_{12} J v_2 = 0, -\omega^2 f_{21} m v_1 + (1 - \omega^2 f_{22} J) v_2 = 0.$
	Частотное уравнение
	$\begin{vmatrix} 1 - \omega^2 f_{11} m & -\omega^2 f_{12} J \\ -\omega^2 f_{21} m & 1 - \omega^2 f_{22} J \end{vmatrix} = 0,$
	$(1-\omega^2 f_{11}m)(1-\omega^2 f_{22}J)-\omega^4 f_{12}f_{21}mJ=0,$
	$\omega^4 m J \left(f_{11} f_{22} - f_{12}^2 \right) - \omega^2 \left(f_{11} m + f_{22} J \right) + 1 = 0.$
	$ (1 - \omega^2 f_{11} m) (1 - \omega^2 f_{22} J) - \omega^4 f_{12} f_{21} m J = 0, $ $ \omega^4 m J \left(f_{11} f_{22} - f_{12}^2 \right) - \omega^2 \left(f_{11} m + f_{22} J \right) + 1 = 0. $ $ f_{11} f_{22} - f_{12}^2 = \frac{l^4}{12 \left(EI \right)^2}, \ m J = m^2 r^2 = \frac{m^2 l^2}{9}, \ f_{11} m + f_{22} J = \frac{m l}{EI} \left(\frac{l^2}{3} + r^2 \right) = \frac{4m l^3}{9EI} $
	$\frac{m^2 l^6}{108 \big(EI\big)^2} \omega^4 - \frac{4m l^3}{9EI} \omega^2 + 1 = 0 , \text{ его корни } \omega_1^2 = 2,3667 \frac{EI}{m l^3},$
	$\omega_2^2 = 45,6333 \frac{EI}{ml^3}, \ \omega_1 = 1,5384 \sqrt{\frac{EI}{ml^3}}, \ \omega_2 = 6,7552 \sqrt{\frac{EI}{ml^3}}.$

№ задания	Формулировка и решение задания
	$\frac{v_{2j}}{v_{1j}} = \frac{1 - \omega_j^2 f_{11} m}{\omega_j^2 f_{12} J}, \omega_j^2 = k_j^2 \frac{EI}{m l^3}, k_1^2 = 2,3667, k_2^2 = 45,6333$
	$\frac{v_{2j}}{v_{1j}} = \frac{1 - \omega_j^2 f_{11} m}{\omega_j^2 f_{12} J} = \frac{1 - k_j^2 \frac{EI}{ml^3} \frac{l^3 m}{3EI}}{k_j^2 \frac{EI}{ml^3} \frac{l^2 m r^2}{2EI}} = \frac{1 - k_j^2 / 3}{k_j^2 l / 18}, $ или $\frac{v_{2j} l}{v_{1j}} = 18 \frac{1 - k_j / 3}{k_j}$ $\frac{v_{2l} l}{v_{11}} = 18 \frac{1 - \frac{k_1^2}{3}}{k_1^2} = 18 \frac{1 - \frac{2,3667}{3}}{2,3667} = 1,6055$
	$\frac{v_{21}l}{v_{11}} = 18 \frac{1 - \frac{k_1^2}{3}}{k_1^2} = 18 \frac{1 - \frac{2,3667}{3}}{2,3667} = 1,6055$
	$\frac{v_{22}l}{v_{12}} = 18 \frac{1 - \frac{k_2^2}{3}}{k_2^2} = 18 \frac{1 - \frac{45,6333}{3}}{45,6333} = -5,6056$
	Графическая иллюстрация
	v_{11}
	v_{12} v_{22}
	Проверим ортогональность по кинетической энергии:
	$a_{11}v_{11}v_{12} + a_{22}v_{21}v_{22} = v_{11}v_{12}\left(m + J\frac{v_{21}}{v_{11}}\frac{v_{22}}{v_{12}}\right) = v_{11}v_{12}m\left(1 + \frac{l^2}{9}\frac{v_{21}}{v_{11}}\frac{v_{22}}{v_{12}}\right) =$
	$= v_{11}v_{12}m\left(1 + \frac{1,6055(-5,6056)}{9}\right) \equiv 0.$
9.1	Обобщенная координата $q=x-$ горизонтальное перемещение центра масс рейки относительно положения равновесия, в котором пружины не деформированы. При перемещении рейки x цилиндр поворачивается на угол $\phi=x/r$. Кинетическая энергия

№	Формунировие и рашание зачения
задания	Формулировка и решение задания
	$T = \frac{1}{2}m_1\dot{x}^2 + \frac{1}{2}J_2\dot{\phi}^2, \ \dot{\phi} = \frac{\dot{x}}{r}, \ J_2 = \frac{m_2r^2}{2},$
	$T = \frac{1}{2}m_1\dot{x}^2 + \frac{1}{2}\frac{m_2r^2}{2}\frac{\dot{x}^2}{r^2} = \frac{1}{2}\left(m_1 + \frac{m_2}{2}\right)\dot{x}^2 = \frac{1}{2}a\dot{x}^2,$
	$a=m_{\!_1}+rac{m_{\!_2}}{2}-$ инерционный коэффициент. Потенциальная энергия
	$\Pi = \frac{1}{2}c_1x^2 + \frac{1}{2}c_2(\varphi l)^2 = \frac{1}{2}c_1x^2 + \frac{1}{2}c_2\left(\frac{x}{r}l\right)^2 = \frac{1}{2}\left(c_1 + c_2\frac{l^2}{r^2}\right)x^2 = \frac{1}{2}cx^2,$
	$c=c_1+c_2rac{l^2}{r^2}$ — коэффициент жесткости.
	Уравнение колебаний $a\ddot{x} + cx = 0$, или $\ddot{x} + \omega_0^2 x = 0$.
	Собственная частота $\omega_0 = \sqrt{\frac{c}{a}} = \sqrt{\frac{c_1 + c_2 \frac{l^2}{r^2}}{m_1 + \frac{m_2}{2}}}$.
	Интенсивность радиальной нагрузки равна нулю, и поэтому дифференциальное уравнение изгиба оболочки
	$\frac{d^4 w}{dx^4} + 4 \beta^4 w = \frac{q}{D}$
	будет однородным:
10.1	$\frac{d^4w}{dx^4} + 4\beta^4w = 0.$
	Интеграл его не содержит частного решения и имеет вид
	$w = e^{\beta x} (C_1 \sin \beta x + C_2 \cos \beta x) + e^{-\beta x} (C_3 \sin \beta x + C_4 \cos \beta x)$
	Нагружение М₀ и Q₀ вызывает местный изгиб, радиальные перемещения быстро затухают. При этом необходимо учитывать, что
	при $x \to \infty$ $w \to 0$
	Еще два условия можно записать для нагруженного торца: при x = 0 Mx = M₀
	$\dot{\rho}$ и $x = 0$ $Qx = Q_0$
	На основании первого условия получим $w_{x\to\infty} = \left e^{\beta x} \left(C_1 \sin \beta x + C_2 \cos \beta x \right) \right _{x\to\infty} \to 0.$
	$w_{x\to\infty} = [e^{-t}(c_1 \sin \rho x + c_2 \cos \rho x)]_{x\to\infty} \to 0.$ Чтобы это условие соблюдалось, круглая скобка должна быть равна нулю. Синус и
	косинус одновременно быть равными нулю не могут, следовательно, выполнение

№ задания	Формулировка и решение задания
эцдиния	равенства возможно, только если C₁ = C₂ = 0. Тогда
	$w = e^{-\beta x} \left(C_3 \sin \beta x + C_4 \cos \beta x \right)$
	и для определения двух постоянных С₃ и С₄ достаточно двух условий на нагруженном краю. Из второго условия найдем
	$\left(-D\frac{d^2w}{dx^2}\right)_{x=0} = M_0$
	и на основании
	$Q_x = \frac{\partial M_x}{\partial x}$
	$-\left(D\frac{d^3w}{dx^3}\right)_{x=0} = Q_0$
	Вычислим производные по x от выражения для перемещения w:
	$\frac{dw}{dx} = -\beta \left[C_3 e^{-\beta x} \left(\sin \beta x - \cos \beta x \right) + C_4 e^{-\beta x} \left(\cos \beta x - \sin \beta x \right) \right];$
	$\frac{d^2w}{dx} = 2\beta^2 \left[e^{-\beta x} \sin \beta x C_4 - e^{-\beta x} \cos \beta x C_3 \right];$
	$\frac{d^3w}{dx^3} = 2\beta^3 \left[C_3 e^{-\beta x} \left(\sin \beta x - \cos \beta x \right) + C_4 e^{-\beta x} \left(\cos \beta x - \sin \beta x \right) \right].$
	Тогда получим
	$D\beta^2 2C_3 = M_0$
	откуда
	$C_3 = \frac{M_0}{2D\beta^2}$
	Подставив найденное значение в выражение для поперечной силы, найдем
	$-2D\beta^3 \left(\frac{M_0}{2D\beta^2} + C_4\right) = Q_0,$
	откуда
	$C_4 = -\frac{Q_0}{2D\beta^3} - \frac{\beta M_0}{2D\beta^3}$
	Подстановка найденных значений в выражение для прогиба дает уравнение изогнутой срединной поверхности оболочки
	$w = \frac{e^{-\beta x}}{2D\beta^3} \left[M_0 \beta (\sin \beta x - \cos \beta x) - Q_0 \cos \beta x \right]$
	На торце цилиндрической оболочки
	$w_{x=0} = w_{\text{max}} = -\frac{1}{2D\beta^3} (\beta M_0 + Q_0)$
	где знак минус показывает, что при принятых за положительные усилия M_0 и Q_0 и оси z, направленной по радиусу к центру кривизны, как показано на рисунке

№ задания	Формулировка и решение задания
	a_{o,M_0}
	перемещение w происходит от центра (радиус R увеличивается). Подставляя заданные значения, найдем w(0) ≈0,55 мм
	Разрешающее уравнение для осесимметричного изгиба круглых пластинок через функцию прогиба w (r), имеет вид:
	$\frac{d^4w}{dr^4} + \frac{2}{r} \cdot \frac{d^3w}{dr^3} - \frac{1}{r^2} \cdot \frac{d^2w}{dr^2} + \frac{1}{r^3} \cdot \frac{dw}{dr} = \frac{q}{D}$
	Относительно угла поворота это уравнение можно представить в виде $\frac{\theta''+\frac{\theta'}{r}-\frac{\theta}{r^2}=\frac{Q}{D}}{H$ Найдем частное решение неоднородного уравнения.
	$\theta_{\text{\tiny \tiny \tiny HACTH.}} = \frac{1}{2D} \int_{r_0}^{r} \frac{r^2 - s^2}{r} Q(s) \cdot ds$
11.1	Для определения Q (s) выделим центральную часть пластинки радиусом «s» и рассмотрим её равновесие:
	$Q(\underline{s}) \qquad \sum_{\mathbf{Q}} \mathbf{z} = \mathbf{Q}(\mathbf{s}) \cdot 2\pi \cdot \mathbf{s} + \mathbf{q} \cdot \pi \cdot \mathbf{s}^2 = 0,$ откуда $\mathbf{Q}(\mathbf{s}) = -\frac{\mathbf{q}}{2} \cdot \mathbf{s}$
	Тогда:
	$\theta_{_{\text{\tiny \tiny MACTH.}}} = -\frac{q}{4D} \int\limits_{r_0}^{r} \frac{r^2 - s^2}{r} \cdot s \cdot ds = -\frac{q}{4D} \int\limits_{r_0}^{r} \!\! \left(r - \frac{s^2}{r}\right) \!\! s \cdot ds = -\frac{q}{4D} \!\! \left(r \frac{s^2}{2} - \frac{s^4}{4r}\right) \!\! \right _{r_0 = 0}^{r} = 0$
	$= -\frac{q}{4D} \left(\frac{r^3}{2} - \frac{r^3}{4} \right) = -\frac{qr^3}{16D}.$

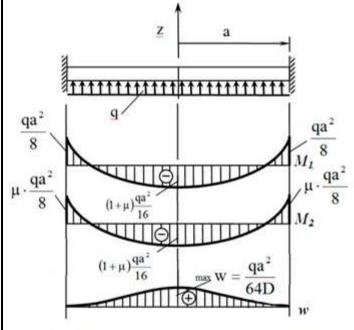
№ задания	Формулировка и решение задания
, ,	Итак, полное решение будет:
	$\theta = Ar + \frac{B}{r} - \frac{qr^3}{16D}$
	Граничные условия задачи:
	при r=0, θ=0, откуда: B=0,
	$\theta = A \cdot r - \frac{qr^3}{16D}$
	при r=a, θ=0, откуда:
	$A = \frac{qa^2}{16D}$
	Окончательно получаем
	$\theta = \frac{q}{16D} \left(a^2 \cdot r - r^3 \right)$
	Вычислим изгибающие моменты:
	$M_1 = D\left(\theta' + \mu \frac{\theta}{r}\right) = \frac{q}{16}\left(a^2 - 3r^2 + \mu a^2 - \mu r^2\right) = \frac{q}{16}\left[(1 + \mu)a^2 - (3 + \mu)r^2\right] =$
	$=\frac{qa^{2}}{16}\left[(1+\mu)-(3+\mu)\frac{r^{2}}{a^{2}}\right],$
	$M_2 = D\left(\frac{\theta}{r} + \mu\theta'\right) = \frac{qa^2}{16}\left[(1+\mu) - (1+3\mu)\frac{r^2}{a^2}\right]$
	Для построения эпюр изгибающих моментов вычислим ординаты: при r=0
	$M_1 = (1 + \mu) \frac{qa^2}{16}, M_2 = M_1,$
	при r=a
	$M_1 = -\frac{qa^2}{8}$, $M_2 = -\mu \frac{qa^2}{8}$
	Найдем прогибы пластины
	$w = C - \int_{r_0}^{r} \theta \cdot dr = C - \frac{q}{16D} \int_{r_0}^{r} (a^2r - r^3) \cdot dr =$
	$=C-\frac{q}{16D}\left[a^2\frac{r^2}{2}-\frac{r^4}{4}\right]_{r_0=0}^r=C-\frac{qa^2}{32D}\left(r^2-\frac{r^4}{2a^2}\right).$
	Константу найдем из граничного условия в заделке при r=a (w=0)

N_{2}
залания

Формулировка и решение задания

$$0 = C - \frac{qa^2}{32D} \left(a^2 - \frac{a^2}{2}\right),$$

$$C = \frac{qa^4}{64D}$$


Тогда прогиб в любой точке пластинки будет:

$$w = \frac{qa^4}{64D} - \frac{qa^2}{32D} \left(r^2 - \frac{r^4}{2a^2}\right) = \frac{q}{64D} (a^2 - r^2)^2$$

Наибольший прогиб в центре пластинки, при r=0:

$$w_{max} = \frac{qa^4}{64D}$$

Построим эпюры прогиба w, окружных и радиальных изгибающих моментов

В точках внешнего контура (r=a) радиальные (σ_1) и окружные (σ_2) нормальные

$$\mathbf{r} = \pm \frac{\mathbf{h}}{2}$$

напряжения у поверхности пластинки, то есть при

$$\sigma_1 = \frac{6M_1}{h^2} = \frac{6}{h^2} \cdot \frac{qa^2}{8} = \frac{3qa^2}{4h^2}, \quad \sigma_2 = \frac{6M_2}{h^2} = \frac{6}{h^2} \cdot \mu \frac{qa^2}{8} = \mu \frac{3qa^2}{4h^2}$$

В центре пластинки, при г=0:

$$\sigma_1 = \sigma_2 = \frac{6}{h^2} \cdot (1 + \mu) \frac{qa^2}{16} = (1 + \mu) \frac{3qa^2}{8h^2}$$

Воспользуемся критерием Сен-Венана (считая верхнюю и нижнюю поверхности пластины равноопасными):

при r=a

№ задания	Формулировка и решение задания
	$\sigma_1 = \frac{3qa^2}{4h^2}, \ \sigma_2 = \mu \cdot \frac{3qa^2}{4h^2}, \ \sigma_3 = 0$
	Эквивалентные напряжения:
	$\sigma_1 - \sigma_3 = \frac{3}{4} \frac{qa^2}{h^2}$
	В центре пластинки (r=0):
	$\sigma_1 = \sigma_2 = (1 + \mu) \frac{3qa^2}{8h^2}, \sigma_3 = 0,$
	$\sigma_{_{\mathfrak{I}KB}}^{III} = \sigma_{1} - \sigma_{3} = (1 + \mu) \frac{3}{8} \frac{qa^{2}}{h^{2}}$
	Таким образом, наиболее опасной точкой пластинки является та, что расположена на
	контуре. Условие прочности выполняется:
	$\frac{3qa^2}{4h} = \frac{3*5\cdot10^6\cdot1}{4\cdot3\cdot10^{-2}} = 125\cdot10^6 \le 160\cdot10^6$