Институт электротехники

Направление подготовки Магистерская программа 13.04.02 Электроэнергетика и электротехника

Магистерская программа

Электрические аппараты управления и распределения

энергии

Банк заданий по профильной части вступительного испытания в магистратуру

Задание №1 – задача (50 баллов)

1.1 Медный кабель, питает осветительную нагрузку мощностью P = 4 кВт, $\cos \varphi = 0.95$. Необходимо выбрать сечение кабеля, рассчитать ожидаемый ток короткого замыкания в конце линии длинной 150 м, выбрать номинальный ток и характеристику срабатывания модульного автоматического выключателя для защиты кабеля. Обосновать выбор, используя времятоковую характеристику аппарата с нанесёнными на неё рассчитанными значениями.

Напряжение на зажимах аппарата $U_{\rm H} = 220~{\rm B}$. Реактивным сопротивлением кабеля пренебречь.

Стандартный ряд номинальных токов модульных автоматических выключателей: 6, 10, 16, 20, 25, 32, 40 А

Сечение кабеля, мм ²	1,5	2,5	4	6
Удельное активное сопротивление, мОм/м	15,3	9,2	5,9	4,0
Длительно допустимый ток, А	19	27	38	50

1.2 Медный кабель, питает двигатель мощностью P = 5 кВт, $\cos \varphi = 0.86$. Необходимо выбрать сечение кабеля, рассчитать ожидаемый ток короткого замыкания в конце линии длинной 50 м, выбрать модульный автоматический выключатель для защиты линии. Обосновать выбор, используя времятоковую характеристику аппарата с нанесенными рассчитанными значениями.

Напряжение на зажимах аппарата $U_{\rm H} = 380~{\rm B}$. Реактивным сопротивлением кабеля пренебречь.

Стандартный ряд номинальных токов модульных автоматических выключателей: 6, 10, 16, 20, 25, 32, 40 А

Сечение кабеля, мм ²	1,5	2,5	4	6
Удельное активное сопротивление, мОм/м	15,3	9,2	5,9	4,0
Длительно допустимый ток, А	19	27	38	50

1.3 Медный кабель, питает нагрузку мощностью P=1 кВт, соѕф нагрузки равен 0,95. Необходимо выбрать сечение кабеля, рассчитать ожидаемый ток короткого замыкания в конце линии длинной 100 м, выбрать модульный автоматический выключатель для защиты линии. Обосновать выбор, используя времятоковую характеристику аппарата с нанесенными рассчитанными значениями.

Напряжение на зажимах аппарата $U_{\rm H} = 220~{\rm B}$. Реактивным сопротивлением кабеля пренебречь.

Стандартный ряд номинальных токов модульных автоматических выключателей: 6, 10, 16, 20, 25, 32, 40 А

Сечение кабеля, мм ²	1,5	2,5	4	6
Удельное активное сопротивление, мОм/м	15,3	9,2	5,9	4,0
Длительно допустимый ток, А	19	27	38	50

1.4 Медный кабель, питает нагрузку мощностью P = 5 кВт, соѕф нагрузки равен 0,95. Необходимо выбрать сечение кабеля, рассчитать ожидаемый ток короткого замыкания

в конце линии длинной 60 м, выбрать модульный автоматический выключатель для защиты линии. Обосновать выбор, используя времятоковую характеристику аппарата с нанесенными рассчитанными значениями.

Напряжение на зажимах аппарата $U_{\rm H} = 220~{\rm B}$. Реактивным сопротивлением кабеля пренебречь.

Стандартный ряд номинальных токов модульных автоматических выключателей: 6, 10, 16, 20, 25, 32, 40 А

Сечение кабеля, мм ²	1,5	2,5	4	6
Удельное активное сопротивление, мОм/м	15,3	9,2	5,9	4,0
Длительно допустимый ток, А	19	27	38	50

1.5 Медный кабель, питает нагрузку мощностью P = 6 кВт, соѕф нагрузки равен 0,95. Необходимо выбрать сечение кабеля, рассчитать ожидаемый ток короткого замыкания в конце линии длинной 80 м, выбрать модульный автоматический выключатель для защиты линии. Обосновать выбор, используя времятоковую характеристику аппарата с нанесенными рассчитанными значениями.

Напряжение на зажимах аппарата $U_{\rm H} = 220~{\rm B}$. Реактивным сопротивлением кабеля пренебречь.

Стандартный ряд номинальных токов модульных автоматических выключателей: 6, 10, 16, 20, 25, 32, 40 A

Сечение кабеля, мм ²	1,5	2,5	4	6
Удельное активное сопротивление, мОм/м	15,3	9,2	5,9	4,0
Длительно допустимый ток, А	19	27	38	50

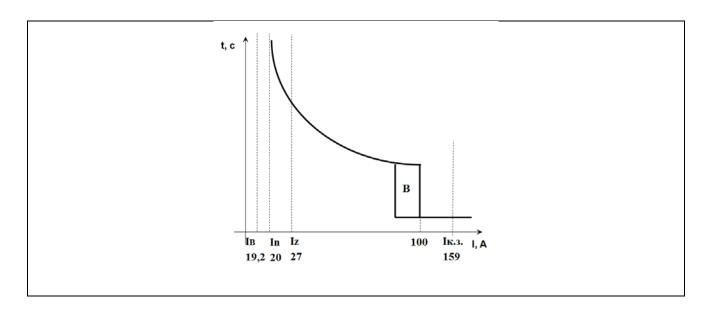
Пример выполнения Задания 1.1

Рабочий ток линии с однофазной нагрузкой, $I_{\rm B}$ А

$$I_{\rm B} = \frac{P}{U_{\rm H} \cdot \cos \varphi} = \frac{4000}{220 \cdot 0.95} = 19.1 \,\text{A}$$

Выбираем автоматический выключатель с номинальным током расцепителя больше рабочего тока в линии $I_{\rm n} > I_{\rm B}$; 20 А

Выбираем сечение кабеля, таким образом, чтобы его длительно допустимый ток был больше номинального тока расцепителя, $I_n < I_z$; 2,5 мм², 27 А


Ожидаемый ток короткого замыкания в конце линии

$$I_{\text{K3}} = \frac{U_{\text{H}}}{r_{y\partial} \cdot l} = \frac{220}{9, 2 \cdot 10^{-3} \cdot 150} = 159 \text{ A},$$

Выбираем характеристику срабатывания автомата I ср $< I_{K3}$ из стандартных кривых $B(3-5)I_n$, $C(5-10)I_n$, $D(10-20)I_n$

Полученным данным удовлетворяет кривая B, т.к. этот аппарат обеспечит защиту линии от короткого замыкания при токе более $100~\mathrm{A}$.

Наносим полученные значения на времятоковую характеристику автоматического выключателя.

	Задание №2 – задача (50 баллов)
2.1	Рассчитать частоту коммутации транзистора, при которой возникает граничный
	режим работы схемы понижающего импульсного регулятора, если входное
	напряжение $E = 200 \text{ B}$, индуктивность дросселя $L = 14 \text{ мк} \Gamma \text{н}$, среднее значение
	тока нагрузки $I_{\rm H} = 30~{\rm A}$, а коэффициент заполнения $\gamma = 0.7$.
2.2	Определить величину пульсации выходного напряжения повышающего
	импульсного регулятора $\Delta U_{\rm H} = (U_{\rm max} - U_{\rm min})$, если входное напряжение $E = 800~{\rm B}$,
	индуктивность дросселя $L = 400$ мкГн, сопротивление нагрузки $R_{\rm H} = 100$ Ом,
	коэффициент заполнения $\gamma = 0.6$, частота коммутации транзистора $f = 30$ кГц,
	емкость конденсатора $C=20$ мк Φ .
2.3	Вычислить среднее значение тока нагрузки, соответствующее граничному
	режиму работы схемы инвертирующего импульсного регулятора, если входное
	напряжение $E = 50 \mathrm{B}$, коэффициент заполнения $\gamma = 0.6$, индуктивность дросселя
	L=30 мкГн, а частота переключения транзистора $f=50$ кГц.
2.4	Определить емкость фильтрующего конденсатора в схеме понижающего
	импульсного регулятора, при которой обеспечивается заданная величина
	пульсации напряжения на нагрузке $\Delta U_{\rm H} = (U_{\rm max} - U_{\rm min}) = 0,5$ В, если входное
	напряжение $E = 400 \text{ B}$, коэффициент заполнения $\gamma = 0.5$, частота переключения
	транзистора $f = 50$ к Γ ц, индуктивность дросселя $L = 200$ мк Γ н.
2.5	Рассчитать индуктивность дросселя, при которой возникает граничный режим
	работы схемы повышающего импульсного регулятора, если входное напряжение
	$E = 500 \mathrm{B}$, коэффициент заполнения $\gamma = 0.6$, среднее значение тока дросселя
	$I_L = 50 \text{ A}$, частота коммутации транзистора $f = 40 \text{ к}\Gamma$ ц.

Пример выполнения Задания 2.1

При анализе процессов в схеме импульсного регулятора (см. рис. 1) делается допущение об идеальной сглаженности напряжения на нагрузке, т.е. не учитывается влияние емкости конденсатора ($C = \infty$). Составляются эквивалентные схемы замещения регулятора для включенного и выключенного состояния транзистора, считая полупроводниковые приборы идеальными (см. рис. 2). В результате получают выражения $i_L(t)$ для режима работы с непрерывным током дросселя:

$$i_L^{(1)} = \frac{E - U_{\rm H}}{L} t + I_{\rm min} \; , \; i_L^{({\rm II})} = -\frac{U_{\rm H}}{L} t + I_{\rm max} \; , \label{eq:iL}$$

где $U_{\rm H} = U_{\rm Bыx} = \gamma \, E$ — напряжение на нагрузке (выходное напряжение регулятора), $I_{\rm min}$ и $I_{\rm max}$ — минимальное и максимальное значение тока. Соответствующая диаграмма тока показана на

рис. 3.

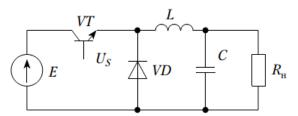


Рис. 1. Импульсный регулятор с последовательным ключом

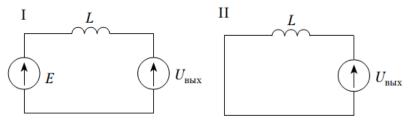


Рис. 2.Схемы замещения регулятора: I- VT включен; II-VT выключен

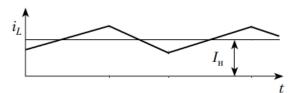
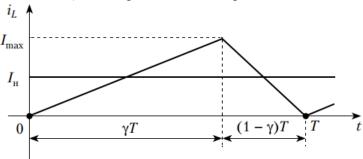



Рис. 3. Диаграмма тока дросселя

Граничный режим работы схемы регулятора — это режим, при котором ток дросселя спадает до нуля в момент включения транзистора (в конце интервала непроводящего состояния транзистора). Поэтому

$$\begin{split} I_{\min} &= 0 \,, \\ I_{\max} &= \frac{E - U_{\mathrm{H}}}{L} \cdot \gamma T = \frac{E \left(1 - \gamma\right) \gamma}{L \cdot f} \,, \end{split}$$

где T = 1/f — период переключения транзистора. Соответствующая диаграмма тока дросселя при коэффициенте заполнения $\gamma = 0.7$ представлена на рис. 4.

 $Puc.\ 4.\ Диаграмма тока дросселя в схеме понижающего регулятора при условии граничного режима работы (<math>\gamma=0.7$)

Поскольку пульсацией выходного напряжения регулятора мы пренебрегаем, то ток нагрузки будет постоянным и равным среднему значению тока дросселя, т.е. его постоянной составляющей:

$$I_{\mathrm{H}} = I_{L \, \mathrm{cp}} = \frac{1}{T} \int_{0}^{T} i_{L}(t) dt = \frac{1}{T} \left(\int_{0}^{\gamma T} \frac{E - U_{\mathrm{H}}}{L} \cdot t \cdot dt + \int_{0}^{(1 - \gamma)T} \left(I_{\mathrm{max}} - \frac{U_{\mathrm{H}}}{L} \cdot t \right) dt \right).$$

Подставив выражения для $U_{\rm H}$ и проинтегрировав, получим:

$$I_{\rm H} = \frac{1}{T} \left(\frac{E \left(1 - \gamma \right)}{L} \cdot \frac{\left(\gamma T \right)^2}{2} + I_{\rm max} \left(1 - \gamma \right) T - \frac{\gamma E}{L} \cdot \frac{\left(\left(1 - \gamma \right) T \right)^2}{2} \right).$$

Подставив выражение для $I_{\rm max}$, получим выражение, связывающее ток нагрузки и максимальный ток в граничном режиме работы схемы:

$$I_{\rm H} = \frac{1}{T} \left(\frac{I_{\rm max}}{2} \gamma T + I_{\rm max} \left(1 - \gamma \right) T - \frac{I_{\rm max}}{2} \cdot \left(1 - \gamma \right) T \right) = \frac{I_{\rm max}}{2} \,. \label{eq:interpolation}$$

Тогда требуемое значение частоты находится как

$$f = \frac{E(1-\gamma)\gamma}{L \cdot I_{\text{max}}} = \frac{E(1-\gamma)\gamma}{2I_{\text{H}} \cdot L} = \frac{200(1-0,7)0,7}{2 \cdot 30 \cdot 14 \cdot 10^{-6}} = 50 \,\text{kG m}.$$